Hexadecimal to Denary
Convert hexadecimal to denary:
Hexadecimal is base 16, this means there are 16 digits: 0-9 and A-F. You can see the table adjacent what each hexadecimal digit is equivalent to.
1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
16 32 48 64 80 96 112 128 144 160
Example conversion
Convert the hexadecimal number 5D to denary:
16 1 D is 13
5 D (5 * 16) + (D * 1)
(5 * 16) + (13 * 1) = 93
Hex Den Bin
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111The hexadecimal number system uses column headings of 1 and 16, multiplying by 16 each time as the number system is base 16. You only need to know 2 digit hexadecimal numbers for GCSE.
Overview
To convert a hexadecimal number into denary, multiply each digit by its place value and add them together.
As hexadecimal is base 16, that means there are 16 different digits and we need to use more than just 0-9 from denary. Therefore A-F are introduced. As you can see in the table below, each hexadecimal digit is equivalent to a binary nibble.
Hex Den Bin
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111 Example
Convert A3 to denary:
- Write the hexadecimal number underneath the column headings:
16 1 A 3 - Convert any letters to their denary equivalents:
A = 1016 1 10 3 - Multiply each digit by its place value:
(10 × 16) + (3 × 1) - Calculate:
160 + 3 = 163 - Therefore
A316 = 16310
References:
- BBC Bitesize GCSE: AQA, OCR, Edexcel
- Wikibooks Computer Science A level (hexadecimal): OCR
- YouTube - How To Convert Hexadecimal to Decimal (TheOrganicChemistryTutor)