Denary to Hexadecimal

Convert denary to hexadecimal:

Hexadecimal is base 16, this means there are 16 digits: 0-9 and A-F. You can see the table adjacent what each hexadecimal digit is equivalent to.

The 16 times table can useful:

          1x   2x   3x   4x   5x   6x   7x   8x   9x   10x
          16   32   48   64   80   96   112  128  144  160
        
Example conversion

Convert the denary number 93 to hexadecimal:


          16    1                      D is 13
          5     D          (5 * 16) + (D * 1) 
                           (5 * 16) + (13 * 1) = 93
        
          Hex    Den    Bin
          0      0      0000
          1      1      0001
          2      2      0010
          3      3      0011
          4      4      0100
          5      5      0101
          6      6      0110
          7      7      0111
          8      8      1000
          9      9      1001
          A      10     1010
          B      11     1011
          C      12     1100
          D      13     1101
          E      14     1110
          F      15     1111

The hexadecimal number system uses column headings of 1 and 16, multiplying by 16 each time as the number system is base 16. You only need to know 2 digit hexadecimal numbers for GCSE.

Overview

There are a few ways to convert a denary number into hexadecimal. Using / 16 and % or MOD, or converting to binary and then for each nibble write the equivalent hexadecimal digit.

As hexadecimal is base 16, that means there are 16 different digits and we need to use more than just 0-9 from denary. Therefore A-F are introduced. As you can see in the table below, each hexadecimal digit is equivalent to a binary nibble.

      Hex    Den    Bin
      0      0      0000
      1      1      0001
      2      2      0010
      3      3      0011
      4      4      0100
      5      5      0101
      6      6      0110
      7      7      0111
      8      8      1000
      9      9      1001
      A      10     1010
      B      11     1011
      C      12     1100
      D      13     1101
      E      14     1110
      F      15     1111

References: